Calculus of Variations and Geometric Measure Theory
home | mail | papers | authors | news | seminars | events | open positions | login

A. Mondino - H. T. Nguyen

Global conformal invariants of submanifolds

created by mondino on 29 Jan 2015



Inserted: 29 jan 2015
Last Updated: 29 jan 2015

Year: 2015


The goal of the present paper is to investigate the algebraic structure of global conformal invariants of submanifolds. These are defined to be conformally invariant integrals of geometric scalars of the tangent and normal bundle. A famous example of a global conformal invariant is the Willmore energy of a surface. In codimension one we classify such invariants, showing that under a structural hypothesis the integrand can only consist of an intrinsic scalar conformal invariant, an extrinsic scalar conformal invariant and the Chern-Gauss-Bonnet integrand. In particular, for codimension one surfaces, we show that the Willmore energy is the unique global conformal invariant, up to the addition of a topological term (the Gauss curvature, giving the Euler Characteristic by the Gauss Bonnet Theorem). A similar statement holds also for codimension two surfaces, once taking into account an additional topological term given by the Chern-Gauss-Bonnet integrand of the normal bundle. We also discuss existence and properties of natural higher dimensional generalizations of the Willmore energy.


Credits | Cookie policy | HTML 5 | CSS 2.1