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Abstract

We study front propagation problems for forced mean curvature flows and their
phase field variants that take place in stratified media, i.e., heterogeneous media whose
characteristics do not vary in one direction. We consider phase change fronts in in-
finite cylinders whose axis coincides with the symmetry axis of the medium. Using
the recently developed variational approaches, we provide a convergence result relating
asymptotic in time front propagation in the diffuse interface case to that in the sharp
interface case, for suitably balanced nonlinearities of Allen-Cahn type. The result is es-
tablished by using arguments in the spirit of Γ-convergence, to obtain a correspondence
between the minimizers of an exponentially weighted Ginzburg-Landau-type functional
and the minimizers of an exponentially weighted area-type functional. These minimiz-
ers yield the fastest moving traveling waves in the respective models and determine
the asymptotic propagation speeds for front-like initial data. We further show that
generically these fronts are the exponentially stable global attractors for this kind of
initial data and give sufficient conditions under which complete phase change occurs
via the formation of the considered fronts.

1 Introduction

Front propagation is a phenomenon ubiquitous to nonlinear systems governed by reaction-
diffusion mechanisms and their analogs, and arises in many applications, including phase
transitions, combustion, chemical reactions, population dynamics, developmental biology,
etc. There is now a huge literature on the subject dealing with various aspects of front
propagation, from existence of traveling wave solutions, long time asymptotic behavior,
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various singular limits in the presence of small parameters to generalized notions of fronts
and the effects of advection, randomness or stochasticity (see, e.g., the review in [38] and
references therein). By a front, one usually understands a narrow transition region (inter-
face) in which the solution of the underlying reaction-diffusion equation changes abruptly
between two equilibria. At the core of the phenomenon of propagation is the fact that
such fronts may exhibit wave-like long-time behavior, whereby the level sets of the solution
advance in space with some positive average velocity. This geometric aspect of the problem
also leads to an alternative modeling viewpoint, whereby fronts are regarded as infinitesi-
mally thin, i.e., as hypersurfaces whose motion is governed by a geometric evolution law.
In the context of phase field models considered in this paper (see below) the connection
between the diffuse and sharp fronts in the respective diffuse interface and sharp interface
models has been the subject of many studies [1,6,7,15–17,20,23,28,36], starting with the
early works [2,12,19,35] (these lists of references are, of course, far from being exhaustive).

As a prototypical model, consider the following version of the Allen-Cahn equation in
the presence of a heterogeneous forcing term:

φt = ∆φ+ f(φ) + εg(εx). (1.1)

Here φ = φ(x, t) ∈ R is a variable that depends on the spatial coordinate x ∈ Rn and time
t ≥ 0, f(φ) = φ(1 − φ)(φ − 1

2) is a balanced bistable nonlinearity with φ = 0 and φ = 1
being stable equilibria and φ = 1

2 an unstable equilibrium, g(x) is some sufficiently regular
(e.g., of class C2) periodic function and ε > 0 is a parameter. Such an equation may arise,
e.g., in modeling the dynamics of two co-existing phases in a phase transition with non-
conserved order parameter in a medium with periodically varying properties. When ε� 1,
the variations of the properties are weak and slowly changing in space. It is then easy to
show that in this regime there exist two uniquely defined equilibrium states (periodic with
the same period as g), v0 and v1, with the properties:

v0(x) = 2εg(εx) +O(ε2) v1 = 1 + 2εg(εx) +O(ε2). (1.2)

These correspond to the perturbations of the two coexisting phases φ = 0 and φ = 1,
respectively, in the homogeneous Allen-Cahn equation. Now define u = φ− v0. It solves

ut = ∆u+ f(u) + εa(εx, u), (1.3)

where a(εx, u) = 6g(εx)(u− u2) +O(ε). This type of equation for ε� 1 and its solutions
that invade the u = 0 equilibrium will be the main subject of this paper.

On formal asymptotic grounds [1, 6, 12, 20, 35], the dynamics governed by (1.3) with
some fixed initial condition is expected to converge as ε → 0, after rescaling space and
time as

x→ ε−1x, t→ ε−2t, (1.4)
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to a forced mean curvature flow. More precisely, for each (x, t) fixed the function uε(x, t) =
u(ε−1x, ε−2t), where u(x, t) solves (1.3), is expected to converge to either 0 or 1 everywhere
except for an (n− 1)-dimensional evolving hypersurface Γ(t) ⊂ Rn separating the regions
where u = 0 and u = 1 in the limit and whose equation of motion reads

V (x) =
g(x)

cW
− κ(x), (1.5)

where we used the fact that g(x) = limε→0

∫ 1
0 a(x, u)du. Here V (x) is the velocity in the

direction of the outward normal (i.e., pointing into the region where u = 0 in the limit) at
a given point x ∈ Γ(t), κ is the sum of the principal curvatures (positive if the limit set
where u = 1 is convex), and

cW :=

∫ 1

0

√
2W (u) du, W (u) := −

∫ u

0
f(s) ds, (1.6)

where we defined the double-well potential W , associated with f , which is nonnegative and
whose only zeros are u = 0 and u = 1. In view of (1.2), the same result would then hold
for φε(x, t) = φ(ε−1x, ε−2t), where φ(x, t) solves (1.1). For well-prepared initial data such
a result was rigorously established by Barles, Soner and Souganidis, interpreting (1.5) in
the viscosity sense [6] (for related results on unforced mean curvature flows see [15–17,23]).
The case of more general initial conditions was also treated by Barles and Souganidis in [7].
More recently, the problem above was treated within the varifold formalism by Mugnai and
Röger under weaker assumptions on the forcing term and in dimensions two and three [28].
Rigorous leading order asymptotic formulas for solutions of (1.1) in terms of solutions of
(1.5) were also recently provided by Alfaro and Matano [1].

Note that, since the above mentioned results are local in space and time, they are not
suitable for making conclusions about the behavior as t → +∞ of solutions of (1.1) for
ε � 1, via the analysis of (1.5). Nevertheless, it is widely believed that (1.5) should be
able to provide information about the long-time behavior of solutions of (1.1) for ε � 1.
For example, in the context of the Allen-Cahn equation it is interesting to know how fast
the energetically more favored phase invades the energetically less favored phase following
a nucleation event. In the homogenous setting (i.e., with g(x) = ḡ > 0) this would occur
via a radial front moving asymptotically with constant normal velocity, consistent with
(1.5) [5, 10, 24]. In this paper we provide results for this type of questions for a particular
class of heterogeneities in (1.1).

We focus on reaction-diffusion equations and mean curvature flows in infinite cylin-
ders that describe the so-called stratified media. These are media that are fibered along
the cylinder, i.e., those whose properties do not change along the cylinder axis, and this
property can be characterized by the dependence of the nonlinearity for reaction-diffusion
equations and of the forcing term for mean curvature flow only on the transverse coordi-
nate of the cylinder. By a cylinder (in the original, unscaled variables), we mean a set
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Σε = Ωε×R ⊂ Rn, where Ωε = ε−1Ω and Ω ⊂ Rn−1 is either a bounded domain with suffi-
ciently smooth boundary or an (n− 1)-dimensional parallelogram with periodic boundary
conditions, covering the case discussed earlier in the presence of an axis of translational
symmetry. In the case of a general bounded domain Ω, we also supplement the problem
with homogeneous Neumann boundary conditions. Our main interest is to provide a con-
vergence result to relate the asymptotic characteristics of front propagation in the diffuse
interface case with those in the sharp interface case as t→∞ when ε� 1. More precisely,
we wish to characterize the asymptotic propagation speeds for fronts in Σε invading the
u = 0 equilibrium in the case of (1.3) or, equivalently, the φ = v0 equilibrium in the case of
(1.1), in terms of uniformly translating graphs solving (1.5). We also wish to characterize
the shape of the long time limit of the fronts for (1.3) and their relation to those for (1.5)
in the spirit of Γ-convergence (as is done for stationary fronts in [27]).

Variational formulation. Our methods are essentially variational. This stems from the
basic observation [29] that, when the nonlinearity (1.3) is translationally invariant along
the cylinder axis, the solution of this equation in the reference frame moving with speed
c > 0 along the cylinder Σε may be viewed as a gradient flow in L2

c(Σε) := L2(Σε; e
czdx)

generated by the exponentially weighted Ginzburg-Landau-type functional

Φc(u) =

∫
Σε

ecz
(

1

2
|∇u|2 + V (u, y)

)
dx. (1.7)

Here x = (y, z) ∈ Σε, with y ∈ Ωε being the transverse coordinate in the cylinder cross-
section and z ∈ R the coordinate along the cylinder axis in the direction of propagation,
and V (u, y) is a suitably chosen potential (see Section 3). In particular, traveling wave
solutions of (1.3) with speed c that belong to the exponentially weighted Sobolev space
H1
c (Σε), i.e., the space consisting of all functions in L2

c(Σε) with first derivatives in L2
c(Σε),

are fixed points of this gradient flow (see [25, 30]). In the simplest case of (1.1) with the
considered cubic nonlinearity and spatially homogeneous forcing g(x) = ḡ > 0, it follows
from [30] via analysis of (1.3) and an explicit computation that for all ḡ <

√
3/(36ε) there

exists a unique value of c† > 0 satisfying

c† − 8

9
(c†)3 = 6

√
2εḡ, (1.8)

and a profile ū ∈ H1
c†

(Σε) depending only on z such that ū is the unique (up to translations)
minimizer of Φc† over its natural domain (see below). Furthermore, by the results of [32] the
solution of the initial value problem for (1.1) with the initial datum in the form of a sharp
front: φ(x, 0) = v0 for z > h(y) and φ(x, 0) = v1 for z ≤ h(y), with h ∈ C(Ωε), converges
as t → ∞ exponentially fast to v0 + ū after a translation by R∞ − c†t for some R∞ ∈ R.
Thus, for every ε > 0 sufficiently small the solution approaches a flat front perpendicular
to the cylinder axis, which, after the rescaling in (1.4), moves with the normal velocity

V = 6
√

2ḡ +O(ε2). (1.9)
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This is consistent with the plane wave solution of (1.5), in view of the fact that cW =

1/(6
√

2) according to (1.6). A flat front with speed c†0 = 6
√

2ḡ is also the asymptotic
solution of (1.5) with g(x) = ḡ and an initial condition in the form of a graph on Ω [14].

Furthermore, the function corresponding ψ(y) = const minimizes, for c = c†0, the following
exponentially weighted area-type functional

Fc(ψ) =

∫
Ω
ecψ(y)

(
cW
√

1 + |∇ψ(y)|2 − g(y)

c

)
dy, (1.10)

among all ψ ∈ C1(Ω). Here ψ defines the graph z = ψ(y) that represents the sharp
interface front. Note that the functional Fc has a well-known geometric characterization,
which, however, requires some care [22]. Let us introduce the following exponentially
weighted perimeter for S ⊆ Σ:

Perc(S,Σ) := sup

{∫
S
ecz (∇ · φ+ cẑ · φ) dx : φ ∈ C1

c (Σ;Rn), |φ| ≤ 1

}
. (1.11)

We then define the following geometric functional on measurable sets S ⊂ Σ with the
weighted volume

∫
S e

czdx <∞:

Fc(S) := cW Perc(S,Σ)−
∫
S
ecz g(y) dx. (1.12)

By our assumptions, this functional is indeed well defined for all such sets. Since the
functionals in (1.10) and (1.12) agree whenever S = {z < ψ(y)} and ψ is sufficiently
smooth [14], in the example in which g(x) = ḡ > 0 the sets {z < const} minimize Fc for

c = c†0 over all such sets. In fact, they also minimize Fc over its entire domain. This is the
consequence of the following inequality:

Proposition 1.1. Let c > 0 and let S ⊂ Σ be a measurable set with
∫
S e

czdx <∞. Then

Perc(S,Σ) ≥ c
∫
S
eczdx. (1.13)

Proof. By the definition of the weighted perimeter in (1.11), we have

Perc(S,Σ) ≥
∫
S
ecz (∇ · φ+ cẑ · φ) dx, (1.14)

for any admissible test function φ. Choosing φ(y, z) = ηδ(y, z)ẑ, where the cutoff function
ηδ(y, z) := η(δ−1dist(y, ∂Ω))(1− η(δ|z|)) and η ∈ C1(R) with 0 ≤ η′(x) ≤ 2 for all x ∈ R,
η(x) = 0 for all x ≤ 1 and η(x) = 1 for all x ≥ 2, for δ > 0 sufficiently small we find that

Perc(S,Σ) ≥ c
∫
S
ecz ηδ(y, z) dx− δ

∫
S
eczη′(δ|z|)dx . (1.15)

Then, passing to the limit δ → 0, we conclude by monotone convergence theorem and the
fact that

∫
S e

czη′(δ|z|)dx ≤ 2
∫
S e

czdx <∞.
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Problem formulation and main results. The purpose of this paper is to study the
long-time behavior of solutions of (1.1) or (1.3) for ε� 1 via the analysis of traveling wave
solutions to (1.5). In particular we characterize the asymptotic propagation speed and the
shape of the long time limit of fronts invading the u = 0 equilibrium in the case of (1.3) or,
equivalently, the φ = v0 equilibrium in the case of (1.1), in terms of uniformly translating
graphs solving (1.5).

Throughout the paper we always assume that Ω is a bounded domain with boundary
of class C2 and 2 ≤ n ≤ 7 (of course, the physically relevant cases correspond to n = 3
and n = 2). All the results obtained in this paper remain valid in the periodic setting, so
we do not treat this case separately. We set Σ := Ω× R, and in Σ we consider the family
of singularly perturbed reaction-diffusion equations for u = u(x, t) ∈ R, with parameter
ε > 0 and the space and time rescaled according to (1.4):

εut = ε∆u+
1

ε
f(u) + a(y, u) (x, t) ∈ Σ× (0,+∞), (1.16)

with initial datum u(x, 0) = u0(x) ≥ 0 and Neumann boundary conditions on ∂Σ. Here
f(u) is a balanced bistable nonlinearity with f(0) = f(1) = 0, and |a(y, u)| ≤ Cu for some
C > 0 (for precise assumptions see Section 2). For simplicity, we also assume that a(x, u)
does not depend on ε. Once again, the obtained results remain valid after perturbing a
with terms that can be controlled by Cεu for some C > 0 independent of ε.

As was already mentioned, the singular limit of (1.16) as ε → 0 was considered in [6],
where convergence, in a suitable sense, of positive solutions to the level-set formulation of
the mean curvature flow with a suitable forcing term g was proved. Consider a family of
measurable sets S(t) ⊆ Σ with regular boundary, such that Γ(t) = ∂S(t) evolves according
to (1.5) with

g(y) :=

∫ 1

0
a(y, s)ds. (1.17)

We associate to this flow the following quasilinear parabolic problem for h = h(y, t) ∈ R in
Ω, which corresponds to (1.5):

ht =
√

1 + |∇h|2
(
∇ ·

(
∇h√

1 + |∇h|2

)
+

g

cW

)
in Ω× (0,+∞) , (1.18)

with initial datum h(y, 0) = h0(y), and Neumann boundary conditions on ∂Ω. Note that
the subgraph S(t) = {(y, z) ∈ Σ : z < h(y, t)} of the solution of (1.18) coincides with the
family of sets evolving according to (1.5), with initial datum S0 = {(y, z) ∈ Σ : z < h0(y)}.

In Section 3, we extend the results of [30] on existence of traveling waves solutions

to (1.16) of maximal propagation speed c†ε to the considered problem for every ε suffi-
ciently small, under an assumption on the forcing term g for the limit problem, which
is Assumption 3 (see Theorem 3.5). Moreover, we show that under a stronger condition
on the forcing term g, which is Assumption 4, the traveling wave with maximal speed of
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propagation is connecting two nondegenerate stable equilibria (see Proposition 5.6). The
nondegeneracy of the equilibria is an important property for proving that these waves are
long-time attractors for solutions to (1.16).

As for the forced mean curvature flow, we study in Section 4 the existence of generalized
traveling wave solutions, according to Definition 4.2, appropriately adapting to the present
case the arguments developed for the periodic case in [14]. The main result is Theorem
4.8 which states, under Assumption 3, the existence of a maximal speed of propagation of
generalized traveling waves and provides an accurate description of the waves traveling at
maximal speed. Moreover, in Theorem 4.10 and Theorem 4.11 it is proved that, under the
stronger Assumption 4, the traveling waves moving with the maximal speed are unique
and are attractors for the forced mean curvature flow (1.18).

Section 5 contains the main results of the paper. The first one is Theorem 5.3, which
provides a convergence result relating the propagation of diffuse and sharp interfaces. In
particular, we prove that as ε → 0 the maximal propagation speed of the traveling waves
of (1.16) converges to the maximal speed of propagation for (generalized) traveling waves
of (1.18) (for some previous related results see [31, Proposition 4.3 and Theorem 5.3]). By
Corollary 5.4, the latter is then the average speed of the leading edge for general front
like initial data in the limit ε → 0. We also show that as ε → 0 the traveling waves of
(1.16) moving with the maximal speed converge, up to translations, to the characteristic
function of a set whose boundary is a traveling wave of (1.18), moving with maximal speed.
The convergence is along subsequences and holds under Assumption 3. Under the stronger
Assumption 4, we can show that the limit is independent of the subsequence. The result
is Theorem 5.5, which states that under Assumption 4, the long time limit of solutions to
(1.16) converges, as ε→ 0, to a traveling wave solution to (1.18), translating with maximal
speed c†. In addition, in our proofs we employed some new uniform estimates for minimizers
of Ginzburg-Landau functionals with respect to compactly supported perturbations, which
extend those of [11, 18, 33] and are of independent interest. These are presented in the
Appendix.

Notations. Throughout the paper H1, BV , Lp, Ck, Ckc , Ck,α denote the usual spaces
of Sobolev functions, functions of bounded variation, Lebesgue functions, continuous func-
tions with k continuous derivatives, k-times continuously differentiable functions with com-
pact support, continuously differentiable functions with Hölder-continuous derivatives of
order k for α ∈ (0, 1) (or Lipschitz-continuous when α = 1), respectively. For a point x ∈ Σ
in the cylinder Σ = Ω × R, where Ω ⊂ Rn−1, we always write x = (y, z), where y ∈ Ω is
the transverse coordinate and z ∈ R is the coordinate along the cylinder axis. The symbol
B(x, r) stands for the open ball in Rn with radius r centered at x, and for a set A the
symbols A, |A| and χA always denote the closure of A, the Lebesgue measure of A and the
characteristic function of A, respectively. We also use the notation −

∫
A u

2dx = 1
|A|
∫
A u

2dx,

and the convention that ln 0 = −∞ and e−∞ = 0.
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2 Assumptions

We start by listing the assumptions we shall make on the nonlinearities f and a, and the
corresponding forcing g appearing in the evolution problems. We associate to f and a the
potentials

W (u) := −
∫ u

0
f(s) ds, G(y, u) :=

∫ u

0
a(y, s) ds. (2.1)

Recall the definition of the forcing term g in (1.17):

g(y) := G(y, 1). (2.2)

We now state our assumptions on the functions a and f . Let α ∈ (0, 1].

Assumption 1. a ∈ Cαloc(Ω× R), au ∈ Cαloc(Ω× R), a(·, 0) = 0.

Assumption 2. f ∈ C1,α
loc

(
R
)
, f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0, W (1) = W (0) = 0,

W (u) > 0 for all u 6= 0, 1, and lim inf
|u|→∞

W (u) > 0.

Assumption 2 implies that W (u) is a balanced non-degenerate double-well potential (as
a model function one could think of W (u) = 1

4u
2(1 − u)2 corresponding to the example

considered in the introduction). However, we do not require that f has only one other zero,
which is located in (0, 1), as is usually done in the literature. Instead, we only assume that
u = 0 and u = 1 have the same value of W , and that W is greater for all other values of u,
including at infinity. Note that by Assumptions 1 and 2 there exists C, δ0 > 0, depending
only on f and a, such that for every ε ≤ C−1δ0

ε−1W (u)−G(y, u) ≥ 0 ∀(y, u) ∈ Ω×
(
R\(1− C

√
ε, 1 + C

√
ε)
)
, (2.3)

and
ε−1W (·)−G(y, ·) is increasing on [1 + Cε, 1 + δ0] ∀y ∈ Ω. (2.4)

Remark 2.1. Observe that, if the initial datum u0 satisfies 0 ≤ u0(x) ≤ 1 + δ for some
δ ∈ (0, δ0) and all x ∈ Σ, then by the maximum principle and (2.4) we have 0 ≤ u(x, t) ≤
1 + δ for all (x, t) ∈ Σ× [0,+∞) and all ε ≤ C−1δ.

We recall the standard definition of the perimeter of a Lebesgue measurable set A ⊆ Ω
relative to Ω (see, e.g., [4, 22]):

Per(A,Ω) = sup

{∫
A
∇ · φ(y)dy : φ ∈ C1

c (Ω;Rn−1), |φ| ≤ 1

}
. (2.5)

With the help of (2.5), the standing assumption to study front propagation problem for
(1.16) and (1.18) will be the following condition on the forcing term g:
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Assumption 3. Let g ∈ Cα(Ω). Then there exists A ⊆ Ω such that∫
A
g(y)dy > cW Per(A,Ω). (2.6)

This assumption basically ensures that the trivial state u = 0 is energetically less favorable
for ε sufficiently small, resulting in the existence of the invasion fronts.

Remark 2.2. Notice that (2.6) implies, in particular, that supΩ g > 0, and is automatically
satisfied if ∫

Ω
g(y)dy > 0. (2.7)

Finally, we list an additional assumption under which stronger conclusions about the
convergence of fronts can be made.

Assumption 4. Let g ∈ Cα(Ω) and assume that (2.7) holds. Then Ω × R is the unique
minimizer of Fc† under compact perturbations among sets S = ω × R with ω ⊆ Ω and
c† := inf{c > 0 : inf Fc ≥ 0} ∈ (0,∞).

Clearly, Assumption 4 is quite implicit. In Proposition 4.9 we give some sufficient conditions
for it, first in the two-dimensional case and then in every dimension.

Throughout the rest of the paper Assumptions 1–3 are always taken to be satisfied,
with g defined by (2.2). The consequences of Assumption 4 will be explored in Section 4.3.

3 Traveling waves in the diffuse interface case

In this section we consider the front propagation problem in the cylinder Σ for the reaction-
diffusion equation in (1.16) with ε > 0. We are particularly interested in the special solu-
tions of the reaction-diffusion equation (1.16) in the form of traveling waves, i.e., solutions
of (1.16) of the form u(x, t) = ū(y, z− ct), for some c ∈ R and ū ∈ C2(Σ)∩C1(Σ)∩L∞(Σ).
The constant c is referred to as the wave speed and the function ū as the traveling wave
profile. In particular, the profile of the traveling wave solves the equation

ε∆ū+ cεūz +
1

ε
f(ū) + a(y, ū) = 0 (y, z) ∈ Σ, (3.1)

with Neumann boundary conditions ν · ∇ū = 0 on ∂Σ.
More specifically, we are interested in the traveling wave solutions in the form of fronts

invading the equilibrium v = 0 from above. By an equilibrium for (1.16), we mean a
function v : Ω→ R which solves

ε∆v +
1

ε
f(v) + a(y, v) = 0 y ∈ Ω, (3.2)
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with ν · ∇v = 0 on ∂Ω. Note that by our assumptions v = 0 is always an equilibrium.
In terms of the propagation speed and the traveling wave profile, front solutions invading
zero from above are bounded solutions of (3.1) that satisfy

c > 0, ū > 0, and ū(·, z)→ 0 uniformly as z → +∞. (3.3)

Note that existence and qualitative properties of traveling fronts in a variety of settings
have been extensively studied, starting with the classical work of Berestycki and Nirenberg
[8], who analyzed (in our setting and using our notation) traveling fronts connecting zero
with some equilibrium v > 0, i.e., those positive front solutions of (3.1) that also satisfy
ū(·, z)→ v uniformly from below as z → −∞. We point out that existence of the considered
solutions is not guaranteed in general. In particular, we have to impose some condition on
g assuring the existence of non-trivial positive equilibria. The existence of such non-trivial
equilibria for ε� 1 will be a consequence of Assumption 3 (see Proposition 3.4). Similarly,
although for a fixed equilibrium v > 0 as the limit at z = −∞ there is at most one
(modulo translations) front solution (see [8], under some technical assumptions, and [32]
for a general result in the class of the so-called variational traveling waves), in general front
solutions of (3.1) may not be unique. There is, however, at most one front solution of (3.1)
which governs the propagation behavior of solutions of (1.16) with front-like initial data.
These solutions can be characterized variationally (see [30] and the following section) and
are the main subject of our study.

3.1 Variational principle

Following the variational approach to front propagation problems [30] (see also [25,29,31,
32]), for every c > 0 we associate to the reaction-diffusion equation in (1.16) the energy
functional (for fixed ε > 0)

Φε
c(u) =

∫
Σ
ecz
(
ε

2
|∇u|2 +

1

ε
W (u)−G(y, u)

)
dx. (3.4)

This functional is naturally defined on H1
c (Σ) ∩ L∞(Σ), where H1

c (Σ) is an exponentially
weighted Sobolev space with the norm

‖u‖2H1
c (Σ) =

∫
Σ
ecz(|∇u|2 + |u|2) dx. (3.5)

Furthermore, the functional Φε
c is differentiable in H1

c (Σ) ∩ L∞(Σ), and its critical points
satisfy the traveling wave equation (3.1) [25,30].

Remark 3.1. Following [8, Section 4] (see also [37, Theorem 4.1] and [30, Theorem 3.3(iii)])
one can show that every traveling wave (c, u) to (1.16) satisfying (3.3) belongs to H1

c (Σ)
and is a critical point to Φε

c.
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Critical points of Φε
c and, in particular, minimizers of Φε

c play an important role for
the long-time behavior of the solutions of the initial value problem associated with (1.16)
in the case of front-like initial data. Indeed, in [32] it is proved under generic assumptions
on the nonlinearity (see also [29,30]) that the non-trivial minimizers of Φε

c over H1
c (Σ) are

selected as long-time attractors for the initial value problem associated to (1.16) with front-
like initial data. Also, in [30] it was proved under minimal assumptions on the nonlinearity
that the speed of the leading edge of the solution is determined by the unique value of
c†ε > 0 for which Φε

c†ε
has a non-trivial minimizer. Appropriate assumptions to guarantee

existence of minimizers of Φε
c were given in [30]. Here we show that in our case these

conditions are verified for every ε sufficiently small (see Theorem 3.5).
Let us introduce an auxiliary functional

Eε(v) =

∫
Ω

(
ε

2
|∇v|2 +

W (v)

ε
−G(y, v)

)
dy v ∈ H1(Ω) ∩ L∞(Ω). (3.6)

Note that v = 0 is always a critical point of this functional for every ε. Moreover, every
critical point of Eε is an equilibrium for the reaction-diffusion equation (1.16).

Remark 3.2. By [27] (see also [9]) we have that

Γ− lim
ε→0

Eε(u) =

{
E0(A) := cWPer(A,Ω)−

∫
A g dy if u = χA,

+∞ otherwise,
(3.7)

where cW is defined in (1.6), A is Lebesgue measurable and the convergence is understood
in the sense of Γ-convergence in L1(Ω) [9].

Definition 3.3. A function v ∈ H1(Ω) ∩ L∞(Ω) is a stable critical point of Eε if it is a
critical point of the functional and the second variation of Eε is nonnegative, i.e.∫

Ω

(
ε|∇φ|2 +

(
ε−1W ′′(v)−Guu(y, v)

)
φ2
)
dy ≥ 0 ∀φ ∈ H1(Ω) . (3.8)

Moreover, v is a nondegenerate stable critical point of Eε if strict inequality holds in (3.8).

Proposition 3.4. Under Assumptions 1, 2 and 3, there exist positive constants ε0 and C
such that for all ε < ε0 there exists v0

ε ∈ H1(Ω) such that 0 ≤ v0
ε ≤ 1 and Eε(v0

ε) < 0.

Proof. Without loss of generality we may assume that the set A ⊆ Ω in Assumption 3 has
a smooth boundary. Then, by Remark 3.2 we have

Γ− lim
ε→0

Eε(χA) = E0(A)

where E0 is defines in (3.7). Recalling that A has smooth boundary, by the Γ-limsup
construction in [27] (see also Theorem 5.3 below) there exists a family of functions v0

ε ∈
H1(Ω), with 0 ≤ v0

ε ≤ 1 such that v0
ε → χA in L1(Ω) as ε→ 0, and

lim
ε→0

Eε(v0
ε) = E0(A) < 0.

11



In particular, Eε(v0
ε) < 0 for all ε sufficiently small.

By Assumption 2, v = 0 is a non-degenerate stable critical point of the functional Eε

for every ε sufficiently small. Indeed, defining

νε0 := min∫
Ω φ

2=1

∫
Ω

(
ε|∇φ|2 +

(
ε−1W ′′(0)−Guu(y, 0)

)
φ2
)
dy, (3.9)

observe that there exists ε0 > 0, depending on W ′′(0) and ‖au(·, 0)‖∞, such that

νε0 > 0 for all ε < ε0. (3.10)

3.2 Existence of traveling waves

We now state our existence result for the diffuse interface problem.

Theorem 3.5. Under Assumptions 1, 2 and 3, there exist positive constants ε0 and C,
depending on f , a and Ω, such that for all 0 < ε < ε0 there exists a unique c†ε > 0 such
that

i) Φε
c†ε

admits a non-trivial minimizer ūε ∈ H1
c†ε
∩ L∞(Σ) which satisfies

sup
{
z ∈ R | sup

y∈Ω
ūε(y, z) >

1

2

}
= 0. (3.11)

ii) ūε ∈ C2(Σ) ∩ C1(Σ) ∩W 1,∞(Σ), and (c†ε, ūε) is a traveling wave solution to (1.16).

iii) 0 < ūε ≤ 1 + Cε, (ūε)z < 0 in Σ, and

lim
z→+∞

ūε(·, z) = 0 lim
z→−∞

ūε(·, z) = vε in C1(Ω),

where vε is a stable critical point of Eε in (3.6) with Eε(vε) < 0.

iv) Φε
c†ε

(ūε) = 0, and all non-trivial minimizers of Φε
c†ε

are translates of ūε along z.

Proof. By (2.3), (2.4) and Assumption 2 it follows that, for ε sufficiently small, there holds

ε−1W (u)−G(·, u) > 0

for all u < 0, and

ε−1W (u)−G(·, u) > ε−1W (1 + Cε)−G(·, 1 + Cε)

for all u > 1 + Cε. By a cutting argument (as in [30, Theorem 3.3(i)]), we then get, for
any c > 0 and u ∈ H1

c (Σ) ∩ L∞(Σ), that

Φε
c(ũ) ≤ Φε

c(u),

12



where ũ(x) := max(0,min(u(x), 1 + Cε)), with strict inequality if ess supΣu > 1 + Cε or
ess infΣu < 0. Therefore, the result follows from [30, Theorem 3.9] by minimizing Φε

c over
functions with values in [0, 1+Cε]. Notice that the assumptions in [30] are satisfied thanks
to Proposition 3.4 and (3.10). The estimate (3.11) is due to the fact that, since Φε

c†ε
(ūε) = 0,

by (2.3) we have ‖uε‖L∞(Σ) >
1
2 . The fact that (ūε)z < 0 up to the boundary of Σ follows

by the strong maximum principle applied to the elliptic equation satisfied by (ūε)z, with
Neumann boundary conditions, obtained by differentiating (3.1) in z.

Note that the choice of the value 1
2 in (3.11) is arbitrary, and every other value in (0, 1)

could be used equivalently.

Remark 3.6. Observe that Φε
c(u(y, z − a)) = ecaΦε

c(u(y, z)) for all c > 0, a ∈ R and u ∈
H1
c (Σ)∩L∞(Σ). In particular, if ūε is a non-trivial minimizer of Φε

c†ε
, then Φε

c†ε
(ūε(y, z)) =

Φε
c†ε

(ūε(y, z − a)) = 0. Moreover, from [30, Theorem 3.9] we have that Φε
c(u) > 0 for every

non-zero u ∈ H1
c (Σ) ∩ L∞(Σ) and c > c†ε, while inf Φε

c(u) = −∞ for c < c†ε.

3.3 Uniform bounds

We next establish several properties of the traveling wave solutions (c†ε, ūε) in Theorem 3.5
that will allow us to pass to the limit as ε→ 0 in Section 5. We begin by proving a uniform
upper bound for the speeds c†ε as ε→ 0.

Proposition 3.7. Let ε and c†ε be as in Theorem 3.5. Then there exist constants ε1 > 0
and M > 0 depending only on W and G such that 0 < ūε <

3
2 and c†ε ≤ M for all

0 < ε < ε1.

Proof. By Theorem 3.5 and Assumptions 1 and 2 we may take ε1 ∈ (0, ε0) so small that
0 < ūε <

3
2 and that ε−1W (u) − 2G(y, u) ≥ 0 whenever 0 ≤ u ≤ 3

4 . In particular, the
set {ūε > 3

4} has positive measure. Furthermore, we have W (u) ≥ K(1 − u)2 whenever
u ∈ [1

2 ,
3
2 ], for some K ∈ (0, 1]. Hence

Φε
c†ε

(ūε) ≥
K

2

∫
{ūε> 1

2
}
ec
†
εz
(
ε|∇ūε|2 + ε−1(1− ūε)2

)
dx

−
∫
{ūε> 3

4
}
ec
†
εzG(y, ūε) dx

≥ K

2

∫
{ūε> 1

2
}
ec
†
εz|2(1− ūε)∇ūε|dx−

∫
{ūε> 3

4
}
ec
†
εzG(y, ūε) dx

=
K

2

∫
{ūε> 1

2
}
ec
†
εz|∇h(ūε)|dx−

∫
{ūε> 3

4
}
ec
†
εzG(y, ūε) dx ,

13



where h(u) := 1
4 + (u− 1)|u− 1| is an increasing function of u with h(1

2) = 0. In turn, by
the Co-Area Formula [4] we get

Φε
c†ε

(ūε) ≥
K

2

∫ 1
2

0
Per

c†ε
({h(ūε) > t})dt−

∫
{ūε> 3

4
}
ec
†
εzG(y, ūε) dx. (3.12)

On the other hand, by Proposition 1.1 we have

Per
c†ε

({h(ūε) > t}) ≥ c†ε
∫
{h(ūε)>t}

ec
†
εzdx,

where we noted that by Theorem 3.5(iii) the sets {(y, z) : h(ūε(y, z)) > t} are bounded
above in z uniformly in y for each t > 0 and, hence, Proposition 1.1 applies. Therefore,
substituting this inequality into (3.12) and using the layer cake theorem yields

Φε
c†ε

(ūε) ≥
Kc†ε

2

∫ 1
2

0

∫
{h(ūε)>t}

ec
†
εzdx dt−

∫
{ūε> 3

4
}
ec
†
εzG(y, ūε)dx

≥
∫
{ūε> 3

4
}
ec
†
εz

(
1

2
Kc†εh(ūε)−G(y, ūε)

)
dx

≥
∫
{ūε> 3

4
}
ec
†
εz

(
3

32
Kc†ε −G(y, ūε)

)
dx.

We then conclude that c†ε ≤M , where

M :=
32

3K
max

(y,u)∈Ω×[ 3
4
, 3
2

]
G(y, u) < +∞,

for if not, then from above we have Φε
c†ε

(ūε) > 0, contradicting the conclusion of Theorem

3.5(iv).

We now state an ε-independent density estimate for minimizers of Φε
c.

Proposition 3.8. Let ε, c†ε and ūε be as in Theorem 3.5. Given δ ∈ (0, 1) and x̄ ∈ Σ,
there exist C, r̄, ε̄ > 0 depending only on W , G, Ω and δ such that, for every ε ∈ (0, ε̄) and
r ∈ (ε, r̄), there holds

ūε(x̄) ≥ δ ⇒
∫
B(x̄,r)∩Σ

ū2
ε dx ≥ Crn, (3.13)

ūε(x̄) ≤ 1− δ ⇒
∫
B(x̄,r)∩Σ

(1− ūε)2 dx ≥ Crn. (3.14)
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Proof. We only prove (3.13), since (3.14) follows analogously. For ε ∈ (0, ε0) we let ũε(x) :=
ūε(εx) ∈ C1(Σε), with Σε = ε−1Σ. Then ũε is a minimizer of the functional

Φ
c†ε

(u;B(x̄, ρ)) :=

∫
Σε∩B(x̄,ρ)

eεc
†
εz

(
1

2
|∇u|2 +W (u)− εG(εy, u)

)
dx (3.15)

for any ρ > 0, among functions u ∈ C1
(
Σε ∩B(x̄, ρ)

)
with fixed boundary data on

∂B(x̄, ρ) ∩ Σε.
For ρ > 2, let us first consider the case in which B(x̄, ρ) ⊂ Σε. Without loss of generality

we may assume that x̄ = 0. By our assumptions and standard regularity theory [21], there
exists a constant M ≥ 1 independent of ε and ρ such that

‖∇ũε‖L∞(B(0,ρ)) ≤M. (3.16)

Recalling that ũε(0) ≥ δ, (3.16) implies that

−
∫
B(0,R)

ũ2
ε dx ≥

1

|B(0, R)|

∫
B(0, δ

2M )

δ2

4
dx =

δn+2

2n+2RnMn
∀R ∈ [1, ρ]. (3.17)

We now note that in the considered case the functional in (3.15) satisfies the assumptions
of Theorem A.1, with all the constants independent of ε and ρ, as long as ρ ≤ ε−1 and
ε < ε1, where ε1 is given by Proposition 3.7. Therefore, if r0 ≥ 1 is the integer independent
of ε and ρ defined in Theorem A.1, and

α :=
δn+2

2n+2rn0M
n
, (3.18)

we have 0 < α < r−n0 ≤ r1−n
0 . Then by Theorem A.1 we obtain

−
∫
B(0,R)

ũ2
ε dx ≥ α for all R ∈ N ∩ [r0, R0] and ε < ε1, (3.19)

provided that R0 = bε−1r1c satisfies r0 + 1 ≤ R0 < ρ and

r1 <
α

1 + ‖G‖L∞(Ω×(0, 3
2

))

. (3.20)

Note that since α < 1, this statement is non-empty for all ε < ε2(r1), where ε2(r1) :=
min(ε1, r1(2 + r0)−1), and all ρ satisfying r1 < ερ ≤ 1. Furthermore, since R ≥ 1 in (3.19),
extending that estimate to an interval yields

−
∫
B(0,R)

ũ2
ε dx ≥ 2−nα ∀R ∈ [1, ε−1r1], (3.21)
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where we also observed that by the definition of α and (3.17) the estimate in (3.19) holds for
all R ∈ [1, r0] as well. By a rescaling and a translation, this then proves (3.13) for all x̄ ∈ Σ
such that dist(x̄, ∂Σ) > r1, for every r1 > 0 satisfying (3.20) and every ε ∈ (0, ε2(r1)).

We now consider the case of x̄ ∈ Σ such that dist(x̄, ∂Σ) ≤ r1, for r1 > 0 to be
fixed momentarily. Once again, assume without loss of generality that x̄ = 0, which
implies that dist(0, ∂Σε) ≤ ε−1r1. Observe that since ∂Ω is bounded and of class C2, there
exists r1 > 0 satisfying (3.20) and a diffeomorphism φε : Rn → Rn of class C2 such that
φε(B(0, ρ) ∩ Σε) = B+

ε , where B+
ε denotes the intersection of the ball B(0, ρ) with the

half-space {x ∈ Rn : xn > −dist(0, ∂Σε)}, and ρ = 2ε−1r1. In the new coordinate system
the functional in (3.15) becomes

Φ
c†ε

(u;B(0, ρ)) =

∫
B+
ε

eεc
†
εẑ·φ−1

ε (x′)
( 1

2
|Dφε(x′)∇ũ|2 +W (ũ)

− εG(εφ−1
ε (x′), ũ)

)
| detDφε(x

′)|−1 dx′, (3.22)

where ũ(x′) := u(φ−1
ε (x′)). By a standard reflection argument, the minimizer ũε ◦ φ−1

ε

of (3.22) can be extended from B+
ε to a minimizer of an energy functional as in (3.22),

but defined on the whole of B(0, ρ). Then, since this energy functional still satisfies the
assumptions of Theorem A.1, we can repeat the arguments from the preceding part of the
proof and, possibly reducing the value of r1 to some r̄ > 0, establish the estimate in (3.21)
in this case as well, provided that ε < ε̄ for some ε̄ ∈ (0, ε2(r̄)).

4 Traveling waves in the sharp interface case

In this section we consider the front propagation problem in the cylinder Σ, for the forced
mean curvature flow (1.5). Also in this case, we are interested in traveling wave solutions
with positive speed, which are special solutions to the forced mean curvature flow.

Definition 4.1 (Traveling waves). A traveling wave for the forced mean curvature flow
is a pair (c, ψ), where c > 0 is the speed of the wave and the graph of the function ψ ∈
C2(Ω) ∩ C1(Ω) is the profile of the wave, such that h(y, t) = ψ(y) + ct solves (1.18).

Observe that to prove existence of a traveling wave solution it is sufficient to determine
c > 0 such that the equation

−∇ ·

(
∇ψ√

1 + |∇ψ|2

)
=

1

cW
g(y)− c√

1 + |∇ψ|2
, y ∈ Ω, (4.1)

with Neumann boundary condition ν · ∇ψ = 0 on ∂Ω, admits a classical solution. The
graph of this solution will be the profile of the traveling wave.
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4.1 Variational principle

Following the variational approach proposed in [31, Section 4] and developed in [14] for
the forced mean curvature flow, for c > 0 we consider the family of functionals Fc defined
in (1.10). Note that if ψ is bounded and is a critical point the functional Fc then it is a
solution to (4.1).

After the change of variable ζ(y) := ecψ(y)

c ≥ 0, the functional Fc is equivalent to

Gc(ζ) =

∫
Ω

(
cW
√
c2ζ2(y) + |∇ζ(y)|2 − g(y)ζ(y)

)
dy, (4.2)

in the sense that Fc(ψ) = Gc(ζ) for all ζ ∈ C1(Ω) [14]. Since the functional Gc is naturally
defined on BV (Ω) as the lower-semicontinuous relaxation (see, e.g., [3] and references
therein), we introduce the following generalization to the notion of a traveling wave for
(1.18). We use the convention that ln 0 = −∞.

Definition 4.2 (Generalized traveling waves). A generalized traveling wave for the forced
mean curvature flow is a pair (c, ψ), where c > 0 is the speed of the wave, and ψ = 1

c ln cζ
is the profile of the wave, where ζ ∈ BV (Ω) is a non-negative critical point of Gc, not
identically equal to zero.

This definition is consistent with the earlier definition in the following sense. Defining
ω ⊆ Ω to be the interior of the support of ζ, again, by standard regularity of minimizers
of perimeter-type functionals [22, 26] we have that ψ solves (4.1) classically in ω with
ν · ∇ψ = 0 on ∂Ω ∩ ∂ω and, therefore, we have that h(y, t) = ψ(y) + ct solves (1.18) in ω
with Neumann boundary conditions on ∂Ω ∩ ∂ω. In particular, if ω = Ω, then the above
definition implies that (c, ψ) is a traveling wave in the sense of Definition 4.1. In general,
however, ω may differ from Ω by a set of positive measure, in which case the traveling wave
profile ψ obeys the following kind of boundary condition:

lim
y→ȳ

ψ(y) = −∞ ∀ ȳ ∈ ∂ω ∩ Ω. (4.3)

In this situation a generalized traveling wave may have the form of one or several “fingers”
invading the cylinder from left to right with speed c.

The next proposition explains the relation between Assumption 3 and the minimization
problems associated with functionals Gc and, hence, Fc.

Proposition 4.3. Let Assumption 3 hold. Then there exists a unique c† > 0 such that

i) 1
cW |Ω|

∫
Ω g dy ≤ c

† ≤ 1
cW

supΩ g.

ii) If 0 < c < c†, then inf{Gc(ζ) : ζ ∈ BV (Ω), ζ ≥ 0} = −∞.

iii) If c > c†, then inf{Gc(ζ) : ζ ∈ BV (Ω), ζ ≥ 0} = 0, and Gc(ζ) > 0 for every
non-trivial ζ ≥ 0.
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iv) If c = c†, then there exists a non-trivial ζ̄ ≥ 0, with ζ̄ ∈ BV (Ω), such that Gc(ζ̄) =
inf{Gc(ζ) : ζ ∈ BV (Ω), ζ ≥ 0} = 0.

Proof. The result follows from [14, Proposition 3.1 and Corollary 3.2] (see also [31, Propo-
sition 4.1]).

Note that the same argument as in [14, Proposition 3.4, Lemma 3.5] gives that for all
ζ ≥ 0 such that ζ ∈ BV (Ω) we have

Gc(ζ) = Fc(Sψ) (4.4)

where Sψ = {(y, z) ∈ Ω×R : z < ψ(y)} is the subgraph of ψ = 1
c ln cζ. Moreover if ζ ≥ 0

is a non trivial minimizer of Gc, then the subgraph Sψ of ψ is a minimizer, under compact
perturbations, of the functional Fc defined in (1.12). This can be proved as in [22, Theorem
14.9], for more details see [14, Lemma 3.5].

We now prove a density estimate for minimizers under compact perturbations of the
functional Fc, which will be useful in the sequel. Throughout the rest of this section, a set
of locally finite perimeter is identified with its measure theoretic interior [4].

Lemma 4.4. Given c̄ > 0, there exist r0 > 0 and λ > 0 such that for all minimizers S
of Fc under compact perturbations, with c ∈ (0, c̄], and for all x̄ ∈ S, all x̄′ ∈ Σ\S and all
r ∈ (0, r0) the following density estimates hold:

|S ∩B(x̄, r)| ≥ λ rn, (4.5)

|(Σ \ S) ∩B(x̄′, r)| ≥ λ rn. (4.6)

Proof. Let S be a minimizer of Fc under compact perturbations, x̄ ∈ S and r > 0. Up to
a translation in the z-direction, we may assume x̄ = (y, 0) for some ȳ ∈ Ω. By minimality
of S we have

Perc(S,Σ)− 1

cW

∫
S
eczg(y)dx ≤ Perc(S \B(x̄, r),Σ)− 1

cW

∫
S\B(x̄,r)

eczg(y)dx.

Therefore, letting Sr = S ∩B(x̄, r), we obtain

Perc(S,B(x̄, r) ∩ Σ) ≤
∫
∂B(x̄,r)∩S

eczdHn−1(x) +
1

cW

∫
Sr

eczg(y)dx.

On the other hand, we have

Perc(Sr,Σ) = Perc(S,B(x̄, r) ∩ Σ) +

∫
∂B(x̄,r)∩S

eczdHn−1(x),
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and hence

Perc(Sr,Σ) ≤ 2

∫
∂B(x̄,r)∩S

eczdHn−1(x) +
1

cW

∫
Sr

eczg(y)dx

≤ 2
∂

∂r

(∫
Sr

eczdx

)
+
‖g‖∞
cW

∫
Sr

eczdx. (4.7)

Recalling that x̄ = (ȳ, 0), by the relative isoperimetric inequality in Σ0 := Ω× (−1, 1) [4],
there exists C > 0 such that for all r0 ≤ 1 and all r ∈ (0, r0) we have

Perc(Sr,Σ) = Perc(Sr,Σ0)

≥ e−c̄r0Per(Sr,Σ0)

≥ e−c̄r0CΣ0 |Sr|
n−1
n

≥ C

(∫
Sr

eczdx

)n−1
n

(4.8)

for some C > 0 depending only on c̄ and Ω. Let now U(r) :=
∫
Sr
eczdx, and notice that

limr→0 U(r) = 0 and that 0 < U(r) ≤ ec̄r0 |Sr| for all r ∈ (0, r0) by our choice of x̄. From
(4.7) and (4.8), we then get

dU

dr
(r) ≥ CU(r)

n−1
n for a.e. r ∈ (0, r0), (4.9)

for some r0 > 0 and C > 0 depending only on c̄, ‖g‖∞, cW and Ω.
Estimate (4.5) follows from (4.9) by integration. Estimate (4.6) follows by the same

argument, working with Σ\S instead of S.

Remark 4.5. By standard regularity theory (see, e.g., [22,26]) every minimizer of Fc under
compact perturbations is an open set with a boundary of class C2. We note, however, that
by Lemma 4.4 we also have that the boundary of the minimizer is of class C2 uniformly in
Σ.

In the sequel we need the following lemma, based on the rearrangement argument in
the proof of [14, Lemma 3.5].

Lemma 4.6. Let c > 0 and let S ⊂ Σ with
∫
S e

czdx ∈ (0,∞). Then there exists a set
Sψ = {(y, z) ∈ Σ : z < ψ(y)} such that ecψ ∈ BV (Ω) and

Fc(Sψ) ≤ Fc(S). (4.10)

Proof. We begin by defining ψ : Ω→ [−∞,∞) as

ψ(y) :=
1

c
ln

(
c

∫
Sy
eczdz

)
for a.e. y ∈ Ω, (4.11)

19



where Sy := {z ∈ R : (y, z) ∈ S} and, as usual, we use the convention that ln 0 = −∞.
Notice that if Sψ := {(y, z) ∈ Σ : z < ψ(y)}, then by construction

∫
S e

czdx =
∫
Sψ
eczdx

and ∫
S
eczg(y) dx =

∫
Sψ

eczg(y) dx =
1

c

∫
Ω
ecψ(y)g(y) dy. (4.12)

Now, testing (1.11) with φ(y, z) = φ̃(y)ηδ(y, z), where φ̃ ∈ C1
c (Ω;Rn), δ > 0 and ηδ is as in

Proposition 1.1, we have for small enough δ depending on φ̃:

Perc(S,Σ) ≥
∫
S
ecz(∇ · φ+ cẑ · φ)dx

≥
∫

Ω

∫
Sy∩(−δ−1,δ−1)

ecz(∇y · φ̃+ cẑ · φ̃)dz dy

−
∫
S\(Ω×(−δ−1,δ−1))

ecz(|∇y · φ̃|+ δ η′(δ|z|) + c|ẑ · φ̃|)dx

≥
∫

Ω

∫
Sy
ecz(∇y · φ̃+ cẑ · φ̃)dz dy − C

∫
S\(Ω×(−δ−1,δ−1))

eczdx

=

∫
Sψ

ecz(∇y · φ̃+ cẑ · φ̃)dx− C
∫
S\(Ω×(−δ−1,δ−1))

eczdx, (4.13)

for some C > 0 independent of δ. Observing that the last term in the last line of (4.13)
vanishes as δ → 0, we obtain

Perc(S,Σ) ≥
∫
Sψ

ecz(∇y · φ̃+ cẑ · φ̃)dx. (4.14)

In particular, since∫
Sψ

ecz(∇y · φ̃+ cẑ · φ̃)dx =
1

c

∫
Ω
ecψ(∇y · φ̃+ cẑ · φ̃)dy , (4.15)

this implies that ecψ ∈ BV (Ω).
We claim that taking the supremum over all φ̃ in (4.14) yields Perc(Sψ,Σ) (for similar

arguments, see [22, Theorem 14.6]). Indeed, from (4.13) with S replaced by Sψ we obtain,
after sending δ → 0 and then taking the supremum over all φ̃, that

Perc(Sψ,Σ) ≥ sup
φ̃∈C1

c (Ω;Rn)

|φ̃|≤1

∫
Sψ

ecz(∇y · φ̃+ cẑ · φ̃)dx

=:

∫
Ω
ecψ
√

1 + |∇ψ|2 dy . (4.16)
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We now approximate ψ by smooth functions ψε such that

lim
ε→0

∫
Ω
ecψε dy =

∫
Ω
ecψ dy and lim

ε→0

∫
Ω
ecψε

√
1 + |∇ψε|2 dy =

∫
Ω
ecψ
√

1 + |∇ψ|2 dy .

By the lower semicontinuity of the perimeter functional Perc, we obtain

Perc(Sψ,Σ) ≤ lim inf
ε→0

Perc(Sψε ,Σ)

= lim inf
ε→0

sup
φ∈C1

c (Σ;Rn)

|φ|≤1

∫
Sψε

ecz(∇ · φ+ cẑ · φ) dx

= lim inf
ε→0

sup
φ∈C1

c (Σ;Rn)

|φ|≤1

∫
∂Sψε

ecz φ · ν dHn−1(x), (4.17)

where ν is the normal to ∂Sψε pointing out of Sψε , and we used Gauss-Green theorem to
arrive at the last line. From this we obtain

Perc(Sψ,Σ) ≤ lim inf
ε→0

∫
∂Sψε

eczdHn−1(x)

= lim
ε→0

∫
Ω
ecψε

√
1 + |∇ψε|2 dy =

∫
Ω
ecψ
√

1 + |∇ψ|2 dy . (4.18)

Therefore, we have, in fact, an equality in (4.16), and the conclusion of the lemma then
follows by combining (4.14) with (4.12).

We summarize all the conclusions above into the following proposition connecting the
non-trivial minimizers of Gc with those of Fc on its natural domain, i.e., among all mea-
surable sets S ⊂ Σ with

∫
S e

czdx <∞.

Proposition 4.7. Let Assumption 3 hold, and let c† be as in Proposition 4.3. Then

i) If 0 < c < c†, then inf Fc = −∞.

ii) If c > c†, then Fc(S) > 0 for all S ⊂ Σ with
∫
S e

czdx > 0.

iii) There exists a non-trivial minimizer of Fc†, and Fc†(S) = 0. Furthermore, S is a non-
trivial minimizer of Fc† if and only if S = {(y, z) ∈ Σ : z < ψ(y)}, where ψ = 1

c†
ln c†ζ

and ζ ≥ 0 is a non-trivial minimizer of Gc†.

Proof. The result of part i) follows from (4.4) and Proposition 4.3(ii). To prove part ii), we
note that in view Proposition 4.3(iii) and (4.4) we have Fc(Sψ) > 0 for all Sψ as in Lemma
4.6 and apply (4.10). Finally, in view of Remark 4.5, to prove part iii) we only need to
show that the inequality in (4.10) is, in fact, strict for all c > 0 and all regular sets such
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that S 6≡ Sψ. Indeed, it is easy to see that for regular sets satisfying
∫
S e

czdx ∈ (0,∞) we
have

Fc(S) = cW

∫
∂S
ecz dHn−1(x)−

∫
S
eczg(y) dx. (4.19)

On the other hand, choosing φ(y, z) = φ̃(y)ηδ(y, z), where φ̃ ∈ C1
c (Ω;Rn) with |φ̃| ≤ 1,

δ > 0 and ηδ is as in the proof of Proposition 1.1, by Gauss-Green theorem we have∫
S
ecz(∇ · φ+ cẑ · φ)dx =

∫
∂S
eczφ · ν dHn−1(x)

≤
∫
∂S∩{ν·ẑ≥−ε}

ecz dHn−1(x) +

∫
∂S∩{ν·ẑ<−ε}

eczφ · ν dHn−1(x), (4.20)

where ν is the normal vector to ∂S pointing out of S and ε > 0 is arbitrary. Therefore, if
ẑ · φ ≥ 0, we can estimate the left-hand side of (4.20) as∫

S
ecz(∇ · φ+ cẑ · φ)dx

≤
∫
∂S∩{ν·ẑ≥−ε}

ecz dHn−1(x) +
√

1− ε2

∫
∂S∩{ν·ẑ<−ε}

ecz dHn−1(x)

≤
∫
∂S
ecz dHn−1(x)− ε2

2

∫
∂S∩{ν·ẑ<−ε}

ecz dHn−1(x). (4.21)

We now take the supremum of the left-hand side in (4.21) over all φ̃. Passing to the limit
δ → 0 and noting that we can always choose ẑ · φ̃ ≥ 0, by the same arguments as in the
proof of Lemma 4.6 the left-hand side of (4.21) converges to Perc(Sψ,Σ). On the other
hand, if S is non-empty and Sψ 6≡ S, there exists ε > 0 such that the last integral in (4.21)
is strictly positive, implying that

Perc(Sψ,Σ) <

∫
∂S
ecz dHn−1(x).

Combining this with (4.19) and (4.12) yields the result.

4.2 Existence of generalized traveling waves

The characterization of minimizers of the geometric functional Fc in Proposition 4.7 yields
the following result about existence of generalized traveling waves.

Theorem 4.8 (Existence of generalized traveling waves). Let Assumption 3 hold. Then
there exists a unique c† > 0, which coincides with the one in Proposition 4.3, such that:
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i) There exist a function ψ : Ω → [−∞,∞) such that (c†, ψ) is a generalized traveling
wave for the forced mean curvature flow and the set Sψ := {(y, z) ∈ Σ | z < ψ(y)} is
a minimizer of Fc†.

ii) The set ω := {ψ > −∞} is open and satisfies E0(ω) < 0, where E0 is defined in (3.7).
Moreover, ω × R is a minimizer of Fc† under compact perturbations, and ψ ∈ C2(ω).

iii) ψ is unique up to additive constants on every connected component of ω, in the fol-
lowing sense: there exists a number k ∈ N and functions ψi : Ω → [−∞,∞) for
each i = 1, . . . , k such that ωi := {ψi > −∞} 6= ∅ are open, connected and disjoint,

ψi ∈ C2(ωi) and ψ = ln
(∑k

i=1 e
ψi+ki

)
, for some ki ∈ [−∞,∞).

iv) ∂Sψ is a hypersurface of class C2 uniformly in Σ, and ∂ω is a C2 solution to the
prescribed curvature problem

cWκ = g on ∂ω ∩ Ω, (4.22)

where κ is the sum of the principal curvatures of ∂ω ∩ Ω, with Neumann boundary
conditions ν∂ω · ν∂Ω = 0 at ∂ω ∩ ∂Ω.

Proof. We recall that by Proposition 4.7(iii) there exists a set Sψ which is a non-trivial
minimizer of Fc† , and Fc†(Sψ) = 0. Furthermore, by Remark 4.5 the boundary of Sψ is a
uniformly C2 hypersurface in Σ.

Observe also that the class of minimizers Fc† is invariant with respect to shifts along
z and is closed with respect to the L1

loc convergence of their characteristic functions [22].
Therefore, translating the minimizer toward z = +∞ and passing to the limit, we get that
ω × R is a minimizer under compact perturbations of Fc† . The regularity of ∂(ω × R) =
∂ω × R is then a consequence of the classical regularity theory for minimal surfaces with
prescribed mean curvature [22]. In particular (4.22), with Neumann boundary conditions,
follows from the Euler-Lagrange equation for Fc† , observing that ν∂ω×R · ẑ = 0. The
inequality E0(ω) < 0 follows from [14, Remark 3.12].

From the density estimate (4.5), reasoning as in [22, Theorem 14.10], we derive that
ψ is bounded above in ω. Moreover, reasoning as in [22, Theorem 14.13] (see also [14,
Proposition 3.7]), we obtain that ψ is regular on ω, in particular ψ ∈ C2(ω). From this, we
get that ψ is a solution of (4.1) in ω with c = c†. The fact that ψ is uniquely defined up to
translations on every connected component of ω follows from Proposition 4.7(iii) and the
convexity of Gc† (see [14, Propositions 3.7 and 3.10]).

We finally observe that if ψ is a regular and bounded from above solution to (4.1) in
some set ω ⊆ Ω, such that ψ(x) → −∞ as x → ∂ω ∪ Ω, and ψ = −∞ on Ω\ω, then

ζ = ecψ

c ∈ BV (Ω) and Gc(ζ) = 0. This in particular implies that c ≤ c†. Indeed, if c > c†,

ζ = ecψ

c would be a non trivial minimizer of Gc, contradicting Proposition 4.3(iii). This
means that the variational method selects the fastest generalized traveling waves which are
bounded from above.
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4.3 Uniqueness and stability of traveling waves

Under Assumption 4, which is considerably stronger than Assumption 3, we can prove
uniqueness and stability of traveling waves for the mean curvature flow. We begin by
giving several sufficient conditions that lead to Assumption 4.

Proposition 4.9. Let (2.7) hold, and let CΩ be the relative isoperimetric constant of Ω.
Then Assumption 4 holds if one of the following conditions is verified:

i) there is no embedded hypersurface ∂ω ⊆ Ω which solves the prescribed curvature prob-
lem

cWκ = g ∂ω ∩ Ω , (4.23)

with Neumann boundary conditions ν∂ω · ν∂Ω = 0 on ∂ω ∩ ∂Ω,

ii) n = 2 and g > 0 on Ω,

iii) minΩ g ≤ 0 and maxΩ g −minΩ g < CΩcW 2
1

n−1 ,

iv) n > 2, g > 0 on Ω and maxΩ g < CΩcW 2
1

n−1 ,

v) n > 2, g > 0 on Ω, maxΩ g ≥ CΩcW 2
1

n−1 and

max
Ω

g −min
Ω
g < max

Ω
g

((
maxΩ g

CΩcW

)n−1

− 1

)−1

,

vi) n > 1, g ∈ C1(Ω), g > 0 on Ω, and minΩ(g2 − (n− 1)|∇g|) > 0.

Proof. (i) follows from Theorem 4.8. Indeed, if ω is as in Theorem 4.8, then ∂ω is a
solution of the prescribed curvature problem (4.23). (ii) comes from (i), observing that if
ω is a solution of the prescribed curvature problem in R, then g = 0 on ∂ω. The proof of
(iii), (iv), (v) is given in [14, Proposition 3.16], and (vi) is proved in [13].

We now state an existence and uniqueness result. Note that, in view of Proposition
4.7, the value of c† in Assumption 4 coincides with that in Proposition 4.3.

Theorem 4.10 (Existence and uniqueness of traveling waves). Under Assumption 4, there
exist a unique c† > 0 and a unique ψ ∈ C2(Ω) ∩ C1(Ω) such that maxy∈Ω ψ(y) = 0,

and (c†, ψ) is a traveling wave for the forced mean curvature flow (1.18). Moreover, ψ
is the unique minimizer of the functional Fc† over C1(Ω), up to additive constants, and
S = {(y, z) ∈ Σ : z < ψ(y)} is the unique minimizer of Fc† up to translations in z.
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Proof. From Theorem 4.8 we get the existence of a generalized variational traveling wave
(c†, ψ) with ω ⊆ Ω, and ω × R is a minimizer of Fc† under compact perturbations. Then
by Assumption 4 necessarily ω = Ω and, hence, ψ > −∞ in Ω.

We now claim that ψ ≥M in Ω for some M ∈ R. Assume by contradiction that there
exists xn → x ∈ ∂Ω such that ψ(xn) → −∞. By construction we have that the subgraph
Sψ of ψ is a minimizer of Fc† . So, we can apply the density estimate (4.6) to Σ \ Sψ at xn
and obtain a contradiction, if n is sufficiently large.

Since ψ is a bounded regular minimizer of Fc† , it satisfies the Neumann boundary
conditions on ∂Ω. Finally, uniqueness of the pair (c†, ψ) is a consequence of the strong

maximum principle. Indeed, if there are two smooth solutions (c†1, ψ1) and (c†2, ψ2) to (4.1)

with c†2 > c†1, then by a suitable translation we may assume that ψ2 < ψ1. Then, using
those functions as initial data for (1.18), we find that the solutions of (1.18) touch at some

t > 0, contradicting the comparison principle for (1.18) [34]. If, on the other hand, c†1 = c†2,
again, by a suitable translation the two solutions can be made to touch at a point, while
ψ2 ≤ ψ1. Then by strong maximum principle for (4.1) we have ψ1 = ψ2 [34].

Moreover, we get the following stability result.

Theorem 4.11. Let Assumption 4 hold, let (c†, ψ) be as in Theorem 4.10, and let h(y, t)
be the unique solution to (1.18) with Neumann boundary conditions and initial datum
h(y, 0) = h0(y) ∈ C(Ω). Then there exists a constant k ∈ R such that

h(·, t)− c†t− k −→ ψ in C1,α(Ω), as t→ +∞.

Proof. The proof can be obtained by a straightforward adaptation of the argument in [14,
Corollary 4.9].

Remark 4.12. If we assume a weaker assumption than Assumption 4, i.e. that there is at
most one set ω′ ⊆ Ω such that ω′ × R is a minimizer under compact perturbations of the
geometric functional Fc† , then we can prove an analogue of the previous stability result.
Indeed under this assumption there exists a unique (up to additive constants) generalized
traveling wave (c†, ψ), and ψ is supported on ω, where ω can be either ω′ or the whole Ω.

Moreover, there exists a constant k ∈ R such that, as t→ +∞,

h(·, t)− c†t− k −→

{
ψ in C1,α

loc (ω),

−∞ locally uniformly in Ω \ ω,

where h(y, t) is the unique solution to (1.18) with Neumann boundary conditions, and
initial datum h(·, 0) = h0 ∈ C(Ω). For the proof, see [14, Theorem 4.7 and Remark 4.8].
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5 Asymptotic behavior as ε→ 0

In this section we prove a convergence result, as ε → 0, of the traveling waves of (1.16)
to the generalized traveling waves for (1.18). For M > 0 and k > 0, let us introduce the
notations that will be used throughout the proofs in this section:

ΣM := Ω× (−M,M), ‖G‖k,∞ = max
u∈[0,k],y∈Ω

|G(y, u)|. (5.1)

We begin with the following basic compactness result.

Lemma 5.1. Let c > 0 and cε → c as ε → 0. Let uε ∈ H1
cε(Σ) be such that 0 ≤ uε ≤ k

and Φε
cε(uε) ≤ K, for some k,K > 0 independent of ε. Assume that:

∃δ ∈ (0, 1) such that uε(y, z) ≤ δ for all y ∈ Ω and z > 0. (5.2)

Then there exists u ∈ BVloc(Σ, {0, 1}) such that u(·, z) = 0 for all z > 0 and

uε → u in L1
loc(Σ),

upon extraction of a sequence.

Proof. Recall that by (2.3) there exists εδ > 0 such that for every ε < εδ the integrand in
(3.4) is positive for all z ≥ 0. Then, by our assumptions, for every M > 0 we get

K ≥ Φε
cε(uε) ≥

∫
ΣM

ecεz
W (uε)

ε
dx−

∫ M

−∞

∫
Ω
ecεzG(y, uε)dy dz

≥
∫

ΣM

ecεz
W (uε)

ε
dx− |Ω|

cε
‖G‖k,∞ecεM .

Therefore, for every M > 0 and ε small enough we have∫
ΣM

ecεzW (uε)dx ≤ εK
(

1 +
2|Ω|
cK
‖G‖k,∞ecM

)
. (5.3)

On the other hand, by our assumptions and the Modica-Mortola trick [27]∫
ΣM

ecεz|∇uε|
√

2W (uε)dx

≤
∫

ΣM

ecεz

(√ε

2
|∇uε| −

√
W (uε)

ε

)2

+ |∇uε|
√

2W (uε)

 dx
=

∫
ΣM

ecεz
(
ε

2
|∇uε|2 +

W (uε)

ε

)
dx

≤ Φε
cε(uε) +

|Ω|
cε
‖G‖k,∞ecεM ≤ K

(
1 +

2|Ω|
cK
‖G‖k,∞ ecM

)
.
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We define

φ(u) :=

∫ u

0

√
2W (s)ds, (5.4)

and rewrite the previous inequality as∫
ΣM

ecεz|∇φ(uε)|dx ≤ K
(

1 +
2|Ω|
cK
‖G‖k,∞ ecM

)
. (5.5)

This implies that φ(uε) are uniformly bounded in BV (ΣM ) for every M > 0. By com-
pactness theorem in BV (see [4]), we then get that upon extraction of a sequence φ(uε)
converges in L1

loc(Σ) to a function w ∈ BVloc(Σ). Therefore, since u 7→ φ(u) is a continuous
one-to-one map, this implies that up to a subsequence uε converges to u = φ−1(w) almost
everywhere and in L1

loc(Σ). Furthermore, by (5.3) u takes values in {0, 1} and, hence,
u = c−1

W w almost everywhere. Therefore, u ∈ BVloc(Σ; {0, 1}).
Eventually, by assumption (5.2) it follows that u = 0 in Ω× (0,+∞).

We will need the following technical result from the proof of [30, Theorem 3.3].

Lemma 5.2. Let ε > 0 and c†ε be as in Theorem 3.5. Then for every c > 0 and every
u ∈ H1

c (Σ) we have

Φε
c(u) ≥ c2 − (c†ε)2

c2

∫
Σ
ecz

ε

2
|uz|2dx. (5.6)

Proof. We define

ũ(y, z) := u

(
y,
c†ε
c
z

)
. (5.7)

Note that ũ ∈ H1
c†ε

(Σ). By a simple change of variables we then get

Φε
c(u) =

c†ε
c

∫
Σ
ec
†
εz

[
ε

2
|∇yũ|2 +

ε

2

(
c

c†ε

)2

|ũz|2 +
W (ũ)

ε
−G(y, ũ)

]
dx

=
c†ε
c

Φε
c†ε

(ũ) +
c2 − (c†ε)2

cc†ε

∫
Σ
ec
†
εz
ε

2
|ũz|2dx,

which gives the result, since Φε
c†ε

(ũ) ≥ 0.

We now state our main result.

Theorem 5.3. Let Assumptions 1, 2 and 3 hold. Let c†ε, ūε and vε be as in Theorem 3.5,
and let c† be as in Theorem 4.8.

i) There holds
lim
ε→0

c†ε = c†. (5.8)
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ii) For every sequence εn → 0 there exist a subsequence (not relabeled) and an open set
S ⊂ Σ such that

ūεn → χS in L1
loc(Σ),

where S is a non-trivial minimizer of Fc† satisfying S ⊆ Ω× (−∞, 0) and ∂S ∩ (Ω×
{0}) 6= ∅. Moreover,

ūεn → χS locally uniformly on Σ \ ∂S,

and for every θ ∈ (0, 1) the level sets {ūεn = θ} converge to ∂S locally uniformly in
the Hausdorff sense.

iii) If also Assumption 4 holds, then S is the unique minimizer of Fc† from Theorem 4.10
satisfying S ⊆ Ω× (−∞, 0) and ∂S ∩ (Ω× {0}) 6= ∅. Moreover

vε → 1 uniformly in Ω.

Proof. We divide the proof into four steps.

Step 1: we shall prove that
lim inf
ε→0

c†ε ≥ c†.

The proof follows by the standard Modica-Mortola construction of a recovery sequence [27].
Let Sψ be as in Theorem 4.8. Then the hypersurface ∂Sψ is of class C2 uniformly in Σ,
and by Proposition 4.7(iii) Sψ satisfies

cWPerc†(Sψ,Σ) =

∫
Sψ

ec
†zg(y)dx. (5.9)

We consider dSψ to be the signed distance function from ∂Sψ, i.e.,

dSψ(x) := dist(x,Σ \ Sψ)− dist(x, Sψ)

and γ : R → R to be the unique solution to γ′ =
√

2W (γ) with γ(0) = 1
2 . Note that the

map t 7→ γ(t) is monotone increasing and, by Assumption 2, converges exponentially to 0
for t→ −∞ and to 1 for t→ +∞. We let

uε := γ

(
dSψ
ε

)
.

Note that, since ψ is bounded from above by Theorem 4.8, we have that uε ∈ H1
c†

(Σ) for
all ε sufficiently small. Note also that uε → χSψ as ε→ 0 in L1

loc(Σ).
Using the definition of uε, we compute

Φε
c†(uε) =

∫
Σ
ec
†z
√

2W (uε)|∇uε|dx−
∫

Σ
ec
†zG(y, uε)dx

=

∫
Σ
ec
†z|∇φ(uε)|dx−

∫
Σ
ec
†zG(y, uε)dx,
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where φ is as in (5.4). Recalling the definition of g in (2.2) and observing that φ(uε) →
cWχSψ uniformly in the set {|dSψ | ≥ δ} for any δ > 0 as ε→ 0, we can apply the Co-area
Formula [4] and obtain from (5.9), as ε→ 0,

Φε
c†(uε) =

∫ ∞
0

Perc†({φ(uε) > t},Σ)dt−
∫

Σ
ec
†zG(y, uε)dx

→ cWPerc†(Sψ,Σ)−
∫
Sψ

ec
†zg(y)dx = 0. (5.10)

Assume now by contradiction that there exists a sequence of c†ε converging to a constant
c < c†. By (5.6) we have

Φε
c†(uε) ≥

(c†)2 − (c†ε)2

(c†)2

∫
Σ
ec
†z ε

2
|(uε)z|2dx, (5.11)

and observe that by the definition of uε and the regularity of ∂Sψ, we get that

|∇φ(uε)| = ε|∇uε|2 ≤ 2ε|(uε)z|2,

in a ball B(x, r) for some r > 0, where x = (y, z) ∈ ∂Sψ and y ∈ Ω is a point at which ψ
attains its maximum. Combining these two facts yields

Φε
c†(uε) ≥ (c†)2 − (c†ε)2

4(c†)2

∫
Σ∩B(x,r)

ec
†z|∇φ(uε)|dx

→ (c†)2 − c2

4(c†)2
cWPerc†(Sψ,Σ ∩B(x, r)) > 0,

which then contradicts (5.10).

Step 2: let us now prove (i). By Proposition 3.7, c†ε is bounded from above by a constant

independent of ε. In particular, there exists c ∈ [0,+∞) such that c†ε → c as ε→ 0, along
a sequence. By Step 1 we have c ≥ c†, so that it is enough to prove that c ≤ c† for every
sequence ε→ 0.

Recall that, for ε sufficiently small, we have 0 ≤ ūε ≤ 2 and ūε(y, z) ≤ 1
2 for every y ∈ Ω

and z > 0. By (2.3) and Theorem 3.5(iv), this implies that for M > 0 and ε sufficiently
small we have

0 = Φε
c†ε

(ūε)

≥
∫

ΣM

ec
†
εz

(
ε

2
|∇ūε|2 +

W (ūε)

ε
−G(y, ūε)

)
dx− |Ω|

c†ε
‖G‖2,∞e−c

†
εM

≥
∫

ΣM

ec
†
εz
(√

2W (ūε)|∇ūε| −G(y, ūε)
)
dx− 2|Ω|

c
‖G‖2,∞e−cM

=

∫
ΣM

ec
†
εz (|∇φ(ūε)| −G(y, ūε)) dx−

2|Ω|
c
‖G‖2,∞e−cM , (5.12)
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where φ is as in (5.4). By Lemma 5.1 we get, up to a subsequence, that

ūε → χS in L1
loc(Σ), (5.13)

where χS ∈ BVloc(Σ) and S ⊆ Ω× (−∞, 0). Moreover, by (3.11) and the density estimate
in Proposition 3.8 we have

∫
S e

czdx > 0.
By the lower semicontinuity in BV (see [4]) of the functional

u 7→
∫

ΣM

ecz (|∇φ(u)| −G(y, u)) dx,

and by the fact that φ(uε)→ φ(χS) = cWχS in L1(ΣM ), we get

lim inf
ε→0

∫
ΣM

ec
†
εz (|∇φ(ūε)| −G(y, ūε)) dx

≥ cWPerc(S,ΣM )−
∫
S∩ΣM

eczg(y)dx. (5.14)

Sending now M →∞, from (5.12) and (5.14) we conclude that

Fc(S) ≤ 0, (5.15)

which, by Proposition 4.7(ii), implies that c ≤ c†.

Step 3: we now prove (ii). By (5.8) it follows that (5.15) holds with c = c†. Therefore, by
Proposition 4.7(iii) the inequality in (5.15) is in fact an equality, and by Remark 4.5 and
the density estimate (3.13) the set S is a non-trivial minimizer of Fc† , satisfying all the
desired properties. Furthermore, S is the subgraph of a function ψ : Ω → [−∞,∞) that
satisfies all the conclusions of Theorem 4.8.

Let θ ∈ (0, 1) and assume by contradiction that the level sets {ūε = θ} do not converge
to ∂S locally uniformly in the Hausdorff distance. This means that there exist δ,M > 0
and points xε ∈ ΣM such that ūε(xε) = θ and dist(xε, ∂S) ≥ δ > 0. Up to extracting a
subsequence we can assume that xε ∈ S or xε ∈ Σ \ S, for all ε. Assume xε ∈ S, and let
x ∈ S, with dist(x, ∂S) ≥ δ, such that xε → x ∈ S as ε → 0. By (5.13) we have that
ūε → 1 in L1(B(x, δ/2) ∩ Σ), which contradicts the density estimate (3.14). If xε ∈ Σ \ S
one can reason analogously, contradicting the density estimate (3.13).

The locally uniform convergence of ūε to χS outside ∂S is a direct consequence of the
convergence of the level sets {ūε = θ} to ∂S in the Hausdorff sense.

Step 4: it remains to prove (iii). By Theorem 4.10 there exists a unique minimizer S of
Fc† such that S ⊆ Ω × (−∞, 0) and ∂S ∩ (Ω × {0}) 6= ∅, and so ūε → χS in L1(ΣM ) for
every M > 0. Moreover, in this case S is the subgraph of a bounded function ψ defined
in Ω, so we get that χS(y, z) ≡ 1 for all y ∈ Ω and z < minΩ ψ. Then from the locally
uniform convergence proved in Step 3, the monotonicity of ūε(y, z) in z and the fact that
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ūε ≤ 1 + Cε for some C > 0 and ε small enough (see Theorem 3.5), we have ūε(y, z)→ 1
uniformly in Ω × (−∞,M ] for every M < minΩ ψ. The conclusion then follows from the
fact that again by Theorem 3.5 we have ūε(y, z) ≤ vε(y) ≤ 1 +Cε for every (y, z) ∈ Σ.

The result in Theorem 5.3 allows us to make an important conclusion about spreading
of the level sets of solutions of the initial value problem with general front-like linitial data
for ε� 1. We define the leading edge, i.e., the quantity1

Rεθ(t) := sup{z ∈ R : uε(y, z, t) > θ for some y ∈ Ω}, (5.16)

with θ > 0, for the solution uε of (1.16). Then the following result is an immediate
consequence of Theorem 5.3 and [30, Theorem 5.8].

Corollary 5.4. Let uε be a solution of (1.16) with initial datum uε0 ∈ W 1,∞(Σ) ∩ L2
c(Σ)

for some c > c†, where c† is as in Theorem 4.8. Also, let uε0 ≤ 1 + δ in Σ, where δ is as in
Remark 2.1, and let uε0(·, z) ≥ 1 +Cε for all z sufficiently large negative, where C is as in
(2.4). Then under Assumptions 1, 2 and 3 we have

lim
ε→0

lim
t→∞

Rεθ(t)

t
= c†, (5.17)

for all θ ∈ (0, 1), where Rεθ(t) is given by (5.16).

Thus, Rεθ(t) propagates, for ε small enough, asymptotically as t→∞ with the average
speed that approaches c† as ε → 0. The fact that θ can be chosen arbitrarily from (0, 1)
follows by inspection of the proof of [30, Theorem 5.8] and the conclusion of Theorem
5.3(ii).

We now investigate the long-time behavior of the solutions of (1.16) in more detail.
Under Assumption 4, which is stronger than our standing Assumption 3, we show that the
long-time limit of solutions to (1.16) with front-like initial data converges, as ε → 0, to a
traveling wave solution to (1.18) moving with speed c†.

Theorem 5.5. Let Assumptions 1, 2 and 4 hold. Let δ > 0 be such that

(1− u)f(u) > 0 for all u ∈ [1− δ, 1) ∪ (1, 1 + δ],

let uε0 ∈W 1,∞(Σ) ∩ L2
c†ε

(Σ) be such that

0 ≤ uε0 ≤ 1 + δ and lim inf
z→−∞

uε0(y, z) ≥ 1− δ uniformly in Ω, (5.18)

and let uε be the solution of (1.16) with initial datum uε0. Then there exists R∞ ∈ R such
that, for all M > 0,

lim
ε→0

lim
t→∞
‖uε(y, z − c†εt−R∞, t)− χSψ(y, z)‖L1(ΣM ) = 0 , (5.19)

where ψ is given by Theorem 4.10. Moreover, the convergence as ε → 0 after passing to
the limit t→∞ is locally uniform in Σ\∂Sψ.

1The definition in (5.16) corrects a typo in [30, Eq. (5.1)].
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Proof. The proof follows from Theorem 5.3 and from the stability results in Theorem 1 and
Corollary 2.1 of [32], which apply to the solutions of the initial value problem for (1.16)
under the additional assumption that vε(y) = limz→−∞ ūε(y, z) is a nondegenerate stable
critical point of Eε. We note that under our assumptions the value of α in Theorems 1
and 3 of [32] does not depend on the parameter ε. This is due to the fact that u = 1 − δ
is a subsolution for (1.16) for all ε small enough. Thus, to conclude we only need to
demonstrate that under the assumptions of the theorem vε is indeed non-degenerate. This
is proved in Lemma 5.6 below.

Lemma 5.6. Let Assumptions 1, 2 and 4 hold and let (c†ε, ūε) be as in Theorem 3.5.
Then there exists ε0 > 0 such that for every 0 < ε < ε0, vε(y) = limz→−∞ ūε(y, z) is a
nondegenerate stable critical point of Eε.

Proof. By Theorem 5.3(iii), we have that vε → 1 uniformly in Ω. Fix δ > 0 such that
W ′′(u) > 0 for every u ∈ [1 − δ, 1 + δ]. Let ε0 be such that for all ε < ε0 we have
vε(y) ∈ (1− δ, 1 + δ) for all y ∈ Ω. Moreover, eventually decreasing ε0, we have that

W ′′(s)

ε
−Guu(y, s) > 0 ∀y ∈ Ω, s ∈ [1− δ, 1 + δ], ε < ε0.

This implies that vε is a non degenerate stable critical point of Eε.

Remark 5.7. To derive the stability result in Theorem 5.5, it is essential that the local
minimizer vε of Eε to which the traveling wave (c†ε, ūε) is converging as z → −∞ is non-
degenerate, according to Definition 3.3. In general the assumption that vε is nondegenerate
is quite difficult to check, even if it is generically satisfied, see the discussion in [32]. In
Lemma 5.6, we show that a sufficient condition for it is Assumption 4, together with
Assumptions 1 and 2. More generally, we expect that the same nondegeneracy condition
on vε is generically true, when there is at most one set ω ⊆ Ω such that ω×R is a minimizer
under compact perturbations of the geometric functional Fc† and, moreover, this unique
local minimizer has positive second variation.

Lastly, we briefly discuss what kinds of counterparts to our propagation results can be
obtained, using the methods of [6, 7]. We note that because of the local in time nature of
convergence in [6, 7], the order of the limits in (5.19) in such results needs to be reversed.
Then the conclusion can be obtained via the analysis of the long time limit of (1.18), as is
done, e.g., in [14]. To be specific, if the initial data uε0 converge to χSh0

locally uniformly

out of ∂Sh0 , for some h0 ∈ W 1,∞(Ω), then by [6, 7] the solutions uε of (1.16) with initial
data uε0 converge locally uniformly to χSh , where h is the solution of (1.18) with initial
datum h0. Since by [14], under Assumption 4, the function h(y, t) − c†t − R∞ converges
uniformly to ψ(y) as t→ +∞, it follows that

lim
t→∞

lim
ε→0
‖uε(y, z − c†t−R∞, t)− χSψ(y, z)‖C(K) = 0 , (5.20)
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for any compact set K ⊂ Σ \ ∂Sψ. Thus, the expectation about the long time behavior of
solutions of (1.16) for ε� 1 based on the analysis of the mean curvature flow that follows
from (5.20) is justified by our result in Theorem 5.5.
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Appendix

A Density estimates

In this Appendix we establish a general density estimate in the spirit of [11, 18, 33] for
minimizers of Allen-Cahn-type functionals. Note, however, that our estimates are in terms
of the averages of the L2 norms of the minimizers with respect to compactly supported
perturbations, rather than in terms of the densities associated with their superlevel sets.
The key ingredient of the proof is still an application of the Gagliardo-Nirenberg-Sobolev
inequality, as in [11,18,33]. However, the use of a simpler test function and of L2 estimates
makes the proof considerably more straightforward. In fact, our proof is in some sense
more along the lines of the respective density estimates for minimal surfaces and relies in
an essential way on the Modica-Mortola trick [27]. Also, we point out that our functionals,
as in [33] and in contrast to [11,18], do not necessarily admit minimizers that are constants.
Our assumptions are more general than those of [33], however, since they do not require
G(·, u) to have zero mean.

Theorem A.1. For ρ > 2 and u ∈ H1(B(0, ρ)) ∩ L∞(B(0, ρ)), let

H(u) :=

∫
B(0,ρ)

(
(a(x)∇u) · ∇u+ b(x)W (u) +G(x, u)

)
dx, (A.1)

where W is defined by (2.1) with f satisfying Assumption 2, a(x) is a symmetric n × n
matrix, a ∈ W 1,∞(B(0, ρ);Rn×n), b ∈ L∞(B(0, ρ)), G(x, u) is a Carathéodory function,
and a and b satisfy

λ ≤ b(x) ≤ λ−1 and λ|ξ|2 ≤ (a(x)ξ) · ξ ≤ λ−1|ξ|2 ∀x ∈ B(0, ρ), ∀ξ ∈ Rn, (A.2)

for some λ > 0. Then there exists r0 ∈ N depending only on n, W , ‖a‖W 1,∞(B(0,ρ);Rn×n)

and λ such that if u is a minimizer of H with prescribed boundary data on ∂B(0, ρ),
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‖u − 1
2‖L∞(B(0,ρ)) ≤ 1, α ∈ (0, r1−n

0 ), R0 is an integer such that r0 + 1 ≤ R0 < ρ, and

‖G‖L∞(B(0,ρ)×(− 1
2
, 3
2

)) ≤ αR
−1
0 , then

−
∫
B(0,r0)

u2dx ≥ α ⇒ −
∫
B(0,R)

u2dx ≥ α, (A.3)

−
∫
B(0,r0)

(1− u)2dx ≥ α ⇒ −
∫
B(0,R)

(1− u)2dx ≥ α, (A.4)

for all R ∈ [r0, R0] integer.

Proof. We only prove (A.3), since (A.4) then follows by a change of variable u→ 1−u. Let
θ ∈ C∞(R) with θ(x) = 0 for all x < 0, θ(x) = 1 for all x > 1 and θ′(x) ≥ 0 for all x ∈ R.
For 1 ≤ R < ρ − 1, let η(x) := θ(|x| − R) be a cutoff function. Since u is a minimizer of
H with respect to perturbations supported in B(0, ρ), we have H(u) ≤ H(uη). Then by
positivity of a, b and W and the fact that η = 0 in B(0, R), we obtain∫

B(0,R+1)
(1− η2)

(
(a(x)∇u) · ∇u+ b(x)W (u)

)
dx ≤ 2|B(0, R+ 1)|G0

+

∫
B(0,R+1)\B(0,R)

(
1

2
(a(x)∇u2) · ∇η2 + u2(a(x)∇η) · ∇η + b(x)W (uη)

)
dx, (A.5)

where we introduced

G0 := ‖G‖L∞(B(0,ρ)×(− 1
2
, 3
2

)). (A.6)

Integrating by parts the first term in the integral on the right-hand side of (A.5) and using
the assumptions on a and b in the left-hand side, we have

λ

∫
B(0,R+1)

(1− η2)
(
|∇u|2 +W (u)

)
dx ≤ 2|B(0, R+ 1)|G0

+

∫
B(0,R+1)\B(0,R)

(
b(x)W (uη)− u2η∇ · (a∇η)

)
dx. (A.7)

Therefore, since our assumptions imply that W (s) ≤ C1s
2 for all |s| ≤ 3

2 and some C1 > 0
depending only on W , we have∫

B(0,R+1)
(1− η2)

(
|∇u|2 +W (u)

)
dx

≤ C

(
RnG0 +

∫
B(0,R+1)\B(0,R)

u2dx

)
, (A.8)
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for some constant C > 0 depending only on n, W , ‖a‖W 1,∞(Ω;Rn×n) and λ, which changes
from line to line from now on. In particular, since by our assumptions W (s) ≥ C2s

2 for all
|s| ≤ 1

2 and some C2 > 0 depending only on W , we obtain∫
B(0,R)∩{|u|≤ 1

2
}
u2dx ≤ C

(
RnG0 +

∫
B(0,R+1)\B(0,R)

u2dx

)
. (A.9)

We now use the Modica-Mortola trick [27] and estimate the left-hand side of (A.8) from
below as follows:∫

B(0,R+1)
|(1− η2)∇φ(u)|dx ≤ C

(
RnG0 +

∫
B(0,R+1)\B(0,R)

u2dx

)
, (A.10)

where φ(u) is defined via (5.4). Therefore, with the help of Gagliardo-Nirenberg-Sobolev
inequality we get(∫

B(0,R+1)
|(1− η2)φ(u)|

n
n−1dx

)n−1
n

≤ C

(
RnG0 +

∫
B(0,R+1)\B(0,R)

(
u2 + φ(u)|∇η2|

)
dx

)
. (A.11)

Moreover, since by our assumptions C3s
2 ≤ |φ(s)| ≤ C4s

2 for all |s| ≤ 3
2 and some C3, C4 >

0 depending only on W , we have(∫
B(0,R)

|u|
2n
n−1dx

)n−1
n

≤ C

(
RnG0 +

∫
B(0,R+1)\B(0,R)

u2dx

)
. (A.12)

Raising both sides of this inequality to the power n/(n− 1), we obtain∫
B(0,R)∩{|u|> 1

2
}
u2dx ≤ C

(
RnG0 +

∫
B(0,R+1)\B(0,R)

u2dx

) n
n−1

. (A.13)

Let us introduce the quantity

MR :=

∫
B(0,R)

u2dx+ |B(0, 1)|Rn+1G0. (A.14)

Adding (A.9) and (A.13), and expressing the result in terms of MR yields

MR − |B(0, 1)|Rn+1G0 ≤

C

1 +

(
RnG0 +

∫
B(0,R+1)\B(0,R)

u2dx

) 1
n−1

 (MR+1 −MR). (A.15)
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We can rewrite the inequality in (A.15) in the form

MR+1 ≥ K(u,R)MR, (A.16)

where

K(u,R) := 1 +

C

(
1− RG0

−
∫
B(0,R) u

2dx+RG0

)
1 +R

(
RG0 + −

∫
B(0,R+1)\B(0,R) u

2dx
) 1
n−1

≥ 1. (A.17)

Let now r0 ∈ N, and let R0 ∈ N and α ∈ R be such that r0 + 1 ≤ R0 < ρ and
α ∈ (0, r1−n

0 ). If −
∫
B(0,R+1) u

2dx ≥ α for all r0 ≤ R ≤ R0 − 1 integer, then there is nothing
to prove. So suppose the opposite inequality holds for some integer r0 ≤ R1 ≤ R0− 1, and
that R1 is the smallest value of R for which this happens. Then

−
∫
B(0,R1)

u2dx ≥ α and −
∫
B(0,R1+1)\B(0,R1)

u2dx < α , (A.18)

and we can estimate K(u,R1) from below as

K(u,R1) ≥ 1 +
Cα

(R0G0 + α)
(

1 +R1 (R0G0 + α)
1

n−1

)
≥ 1 +

C

1 +R1α
1

n−1

≥ 1 +
Cr0

2R1
. (A.19)

By (A.14) and (A.16), this implies that∫
B(0,R1+1)

u2dx+ 2n(n+ 1)|B(0, 1)|Rn1G0 ≥
(

1 +
Cr0

R1

)∫
B(0,R1)

u2dx, (A.20)

and, hence, by our assumptions and (A.18) we obtain

−
∫
B(0,R1+1)

u2dx ≥
(

1 +
1

R1

)−n(
1 +

Cr0 − 2n(n+ 1)

R1

)
α. (A.21)

Since R1 ≥ 1, choosing

r0 =

⌈
2n(n+ 2)− 1

C

⌉
, (A.22)

where C is the constant appearing in (A.21), we get that the right-hand side of (A.21) is
greater or equal than α, contradicting our assumption on R1.
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Remark A.2. An inspection of the proof of Theorem A.1 shows that the quantity −
∫
B(0,R) u

2dx
is monotonically increasing in R ∈ N, as long as it is not too big. More precisely, under
the assumptions of Theorem A.1, we have that −

∫
B(0,R) u

2dx is monotonically increasing

for all R ∈ [r0, R0] integer, provided that −
∫
B(0,R) u

2dx < r1−n
0 and ‖G‖L∞(B(0,ρ)×(− 1

2
, 3
2

)) ≤
r1−n

0 R−1
0 .

We also note that Theorem A.1 yields the kinds of density estimates for the level sets
of the minimizers of Ginzburg-Landau functionals with respect to compactly supported
perturbations that were previously obtained in [11, 18, 33]. Here we give a result that
extends those of [11, 18, 33] to the case of the functional H in (A.1), generalizing the
estimates obtained for the case of functionals that admit constant minimizers [11,18], and
the estimates of [33] under assumption of periodicity of G, etc.

Corollary A.3. Under the assumptions of Theorem A.1, let β ∈ (0, 1), and for R > 0 let

µβ,R := |{|u| > β} ∩B(0, R)|. (A.23)

Then if µβ,1 > 0, there exist constants C,C ′ > 0 depending only on n, W , ‖a‖W 1,∞(B(0,ρ);Rn×n),
λ, β and µβ,1 such that

µβ,R ≥ CRn, (A.24)

for all R ∈ [1, ρ] satisfying R‖G‖L∞(B(0,ρ)×(− 1
2
, 3
2

)) ≤ C ′.

Proof. Throughout the proof, C,C ′ denote positive constants depending only on n, W ,
‖a‖W 1,∞(B(0,ρ);Rn×n), λ, β and µβ,1 that may change from line to line.

Let r0 ≥ 1 be as in Theorem A.1. Then

−
∫
B(0,r0)

u2dx ≥
β2µβ,1
|B(0, r0)|

=: α ∈ (0, r1−n
0 ). (A.25)

Also, clearly −
∫
B(0,R) u

2dx ≥ α for every 1 ≤ R ≤ r0. Therefore, by (A.25) and Theorem

A.1 we have that (A.3) holds for any R ∈ [r0, R0] integer, provided that r0 + 1 ≤ R0 < ρ is
an integer that satisfies R0G0 ≤ α, where G0 is defined in (A.6). Extending this estimate
to the whole interval then yields∫

B(0,R)
u2dx ≥ 2−nα|B(0, R)| ∀R ∈ [1, R0]. (A.26)

Moreover, since ‖u‖L∞(B(0,ρ)) ≤ 3
2 by the assumptions in Theorem A.1, we can write∫

B(0,R)
u2dx ≤

∫
B(0,R)∩{|u|≤β}

u2dx+
9

4
µβ,R. (A.27)
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On the other hand, by (A.9) (with 1
2 replaced by β) we have∫

B(0,R)∩{|u|≤β}
u2dx ≤ C(Rn−1 +RnG0) ∀R ∈ [1, ρ]. (A.28)

Therefore, by (A.26), (A.27) and (A.28), and recalling that R0G0 ≤ α < 1, we obtain for
all R ∈ [1, R0],

9

4
µβ,R ≥ 2−nα|B(0, 1)|Rn − CRn−1. (A.29)

From this we conclude that µβ,R ≥ CRn whenever R > C ′. At the same time, by definition
µβ,R ≥ µβ,1 ≥ µβ,1(C ′)−nRn whenever R ≤ C ′. This concludes the proof.
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